Thermal Cycling Reliability of Alternative Low-Silver Tin-based Solders
نویسندگان
چکیده
Sn-3.0Ag-0.5Cu (SAC305) alloy is the most widely used solder in electronic assemblies. However, issues associated with cost and drop/shock durability have resulted in a continued search for alternative solder alloys. One approach to improve the drop/shock reliability has been to reduce the silver content in Sn-AgCu alloys. Another approach is doping Sn-Ag-Cu solder with additional elements. Moreover, conflicting results have been reported in literature on the effects of aging on Sn-Ag-Cu alloys. In 2008, International Electronics Manufacturing Initiative (iNEMI) started the “Characterization of Pb-Free Alloy Alternatives” project to provide a comprehensive study of fifteen tin-based solder interconnect compositions benchmarked against the eutectic tin-lead solder. For this study, temperature cycle durability was the primary focus and solders were selected to study the effect of varying silver content, microalloy additions, and aging. This paper reports the preliminary findings from one of the test conditions conducted under the iNEMI project. The cycles to failure for a temperature cycling test condition from -15oC to 125oC, with dwell times of 60 minutes at both extremes are presented. The test assembly consisted of sixteen 192 I/O BGAs and sixteen 84 I/O BGAs soldered on to LG451HR laminate. Preliminary findings revealed that the reduction of silver resulted in a reduction in cycles to failure. In all cases, the fifteen tin-based solders were more durable than the eutectic SnPb solder. Aging did not affect the cycles to failure in SAC105 solder; however, the cycles to failure decreased with aging in SAC305 solder. In addition, aging resulted in a wider distribution of cycles to failure in 192 I/O BGAs.
منابع مشابه
A Nano Silver Replacement for High Lead Solders in Semiconductor Junctions
While it is now widely accepted that most electronic assembly can be reliably effected with lead-free solders, a practicable alternative to the high-lead high-melting-point solders has not been available. That reality has been acknowledged by the interim exemption from the requirements of the EU RoHS Directive granted for solders with 85% or more of lead. With no direct replacement yet found by...
متن کاملLead-free Solder Joint Reliability – State of the Art and Perspectives
There is an increasing demand for replacing tin-lead (Sn/Pb) solders with lead-free solders in the electronics industry due to health and environmental concerns. The European Union recently passed a law to ban the use of lead in electronic products. The ban will go into effect in July of 2006. The Japanese electronics industry has worked to eliminate lead from consumer electronic products for s...
متن کاملBGA Reliability of Multilayer Ceramic Integrated Circuit (MCIC) Devices
Multilayer ceramic integrated circuit (MCIC) devices using low temperature cofired ceramic (LTCC) technology have advantages in the wireless applications attributed to the unique RF materials’ properties and ease of multilayering leading to high Q RF devices. In this paper, the reliability of MCIC-BGA was evaluated under thermal cycling and mechanical test conditions. Two commercial metal paste...
متن کاملA Breakthrough in Power Electronics Reliability – New Die Attach and Wire Bonding Materials
Power Electronics on DCB are used for high power devices. There is a wide field of applications for such power electronic devices like converters or inverters for wind mills, solar parks or for electric and hybrid vehicles. High efficiency, long life time and increased power density are the major technical requirements for those devices. Especially the life time, but also the power density are ...
متن کامل